A model-free no-arbitrage price bound for variance options
نویسندگان
چکیده
In the framework of Galichon, Henry-Labordère and Touzi [9], we consider the model-free no-arbitrage bound of variance option given the marginal distributions of the underlying asset. We first make some approximations which restrict the computation on a bounded domain. Then we propose a gradient projection algorithm together with a finite difference scheme to approximate the bound. The general convergence result is obtained. We also provide a numerical example on the variance swap option. Key-words: Variance option, model-free price bound, gradient projection algorithm. ∗ We thank Nizar Touzi (CMAP) for fruitful discussions. † INRIA-Saclay and CMAP, École Polytechnique, 91128 Palaiseau, and Laboratoire de Finance des Marchés d’Énergie, France ([email protected]). ‡ CMAP, École Polytechnique, 91128 Palaiseau, France ([email protected]), research supported by the Chair Financial Risks of the Risk Foundation sponsored by Société Générale, the Chair Derivatives of the Future sponsored by the Fédération Bancaire Française, and the Chair Finance and Sustainable Development sponsored by EDF and CA-CIB. in ria -0 06 34 38 7, v er si on 1 21 O ct 2 01 1 Un borne de valeur sans arbitrage, indépendante d’un modèle, d’options sur variance Résumé : Dans le cadre de Galichon, Henry-Labordère et Touzi [9], nous considérons la borne sans arbitrage, indépendante d’un modèle, étant donné la distribution marginale du sous-jacent. Nous restreignons d’abord le calcul à un domaine borné. Puis nous proposons un algorithme de gradient avec projection, combiné à un schéma de différences finies, pour approcher la borne. Nous obtenons un résultat général de convergence, puis traitons un exemple numérique d’option sur swap. Mots-clés : Option sur variance, borne de prix indépendante d’un modèle, algorithme de gradient avec projection. in ria -0 06 34 38 7, v er si on 1 21 O ct 2 01 1 No-arbitrage bound for variance options 3
منابع مشابه
Pricing European Options in Realistic Markets
We investigate the relation between the fair price for European-style vanilla options and the probability of short-term returns on the underlying asset in the absence of transaction costs. If the asset’s future price has finite expectation, the option’s fair value satisfies a parabolic partial differential equation of the Black-Scholes type in the absence of arbitrage opportunities. However, th...
متن کاملRobust pricing and hedging of double no-touch options
Double no-touch options, contracts which pay out a fixed amount provided an underlying asset remains within a given interval, are commonly traded, particularly in FX markets. In this work, we establish model-free bounds on the price of these options based on the prices of more liquidly traded options (call and digital call options). Key steps are the construction of superand sub-hedging strateg...
متن کاملIS MEAN - VARIANCE ANALYSIS VACUOUS : or
We show in any economy trading options, with investors having mean-variance preferences, that there are arbitrage opportunities resulting from negative prices for out of the money call options. The theoretical implication of this inconsistency is that mean-variance analysis is vacuous. The practical implications of this inconsistency are investigated by developing an option pricing model for a ...
متن کاملEDDIE for Discovering Arbitrage Opportunitiesa
The prices of the option and futures of a stock both reflect the market’s expectation of futures trends of the stock’s price. Their prices normally align with each other within a limited window. When they do not, arbitrage opportunities arise: an investor who spots the misalignment will be able to buy (sell) options on one hand, and sell (buy) futures on the other and make risk-free profits. In...
متن کاملA New Approach to International Arbitrage Pricing
This paper uses a nonlinear arbitrage pricing model, a conditional linear model, and an unconditional linear model to price international equities, bonds, and forward currency contracts. Unlike linear models, the nonlinear arbitrage pricing model requires no restrictions on the payoff space, allowing it to price payoffs of options, forward contracts and other derivative securities. Only the non...
متن کامل